Research on the Crystal Structure of R₃O₅ Type Oxides and Classification of sixfold co-ordinated Oxide Crystals

By Goro YAMAGUCHI

(Received November 7, 1952)

The data of crystal structure of pseudo-broo-					
kite (Fe ₂ O ₃ ·TiO ₂), follows. ⁽¹⁾	a	natural	mineral,	is	as

c = 3.725 kX

Pseudo-brookite Fe₂O₃·TiO₂ Orthorhombic $V_h^{17} = \text{Bbmm}$ a = 9.79 kXZ=4 $b = 9.93 \, kX$

Introduction

In the previous paper,(2) the author found that Al₂O₃·TiO₂ and MgO·2TiO₂ have the same crystal structure as Fe₂O₃·TiO₂ (R₃O₅ type) and

Table 1

Expected Formula	Mixing Molar Ratio of Powdered Oxides	Sintering Temp. (°C.)	Time (h)	Result*
$\mathrm{Fe_{2}O_{3} \cdot TiO_{2}}$	1:1	1 250	1	0.
$\mathrm{Fe_2O_3SnO_2}$	1:1	1000, 1250	1	×
$Al_2O_3 \cdot TiO_2$	1:1	1250, 1400	1	0,
$Al_2O_3 \cdot SnO_2$	1:1	1000,1250	1	×
$MgO \cdot 2TiO_2$	1:2	1400	1	0
$MgO.2SnO_2$	1:2	1250	1	×
$CoO \cdot 2TiO_2$	1:2	1250,1400	1	\bigcirc
$NiO \cdot 2TiO_2$	1:2	1250, 1400	1	×
$ZnO \cdot 2TiO_2$	1:2	1250	1	0.
$ZnO \cdot 2SnO_2$	1:2	1250	1	×

^{*} O...the R3O5 type is found by X-rays. ×...the R₃O₅ tyre is not found.

⁽¹⁾ W. L. Bragg, "Atomic structure of minerals",

^{(1937).} (2) G. Yamaguchi, J. Ceram. Assoc. Japan, 55, 94, (1947),

Experimental Data (spacing in kX)

 d_{430}

 d_{322}

 d_{320}

described a clasification of sixfold coordinated oxide crystals, but, in this paper, other R_3O_5 type oxides and many examples of crystals fitted and not fitted in this classification, shall be described.

ratio and sintered at a constant temperature. After cooling, the sintered products were analyzed by X-ray method and their crystal structure was determined. Conditions of synthesis and the results are shown in Table 1, but these conditions are only typical examples of synthesis.

Synthetic experiment of R₃O₅ type oxides

Values of latice constants

Powdered simple oxides were mixed in a definite

 d_{002}

Obtained latice constants are shown in Table 2.

 α

Calculated Latice Const

c

	002	₩430	322	₩ 320	w	0	· ·	
$\text{Fe}_2\text{O}_3 \cdot \text{TiO}_2$	1.866	1.969	1.541	2.727	9.80	9.93	3.733	
$Al_2O_3 \cdot TiO_2$	1.798	1.905	1.485	2.641	9.46	9.58	3.596	
$MgO \cdot 2TiO_2$	1.867	1.978	1.543	2.739	9.84	9.98	3.734	
$\text{CoO} \cdot 2\text{TiO}_2$	1.862	1.960	1.536	2.713	9.75	9.88	3.724	
ZnO·2TiO ₂	1.867	1.965	1.540	2.723	9.78	9.90	3.734	
			Table 3					
Туре	Positive Results					Negative Results.		
RO (NaCl or MgO type)	$\left\{ \text{ Li}_{2}\text{O}\cdot\text{Fe}_{2}\text{O}_{3} (80) \right.$					$\text{Li}_2\text{O}\cdot\text{Cr}_2\text{O}$) ₃ , Li ₂ O·SnO ₂	
$ m R_3O_4$ (spinel type)	$ \begin{pmatrix} Al_3O_4 \text{ (fused),}^{co} \\ NiO \cdot Al_2O_3 \text{ (110)} \\ MnO \cdot Al_2O_3 \text{ (111)} \\ MnO \cdot Al_2O_3 \text{ (112)} \\ MgO \cdot Cr_2O_3 \text{ (122)} \\ MgO \cdot SnO_2 \text{ (122)} \\ CoO \cdot MgO \cdot TiO_2 \\ CoO \cdot MgO \cdot TiO_3 \\ NiO \cdot CoO \cdot TiO_3 \\ NiO \cdot MgO \cdot SnO_2 \\ CuO \cdot MgO \cdot TiO_3 \\ CuO \cdot MgO \cdot TiO_4 \\ CuO \cdot ZnO \cdot TiO_5 \\ MnO \cdot CoO \cdot TiO_5 \\ MnO \cdot CoO \cdot SnO_5 \\ \end{pmatrix} $	00), CuO·A 00), MgO·J 50), Li ₂ O·5. 50), 2MgO·J 50), 2ZnO·J 2(1250)[8.40 2(1250)[8.50] 2(1250)[8.50] 2(1250)[8.40] 2(1250)[8.40] 2(1100)[8.40] 2(1100)[8.40] 2(1100)[8.40]	l ₂ O ₃ (1100) , Fe ₂ O ₃ (1250) Al ₂ O ₃ (800) , •TiO ₂ (1250) SnO ₂ (1250) 3]†, CoO·Zr 7], CoO·Zr 1, NiO·ZnO 4], NiO·ZnO 4], NiO·Co 4], MnO·M	ZnO·Al ₂ O ₃ (, CoO·Fe ₂ O ₂ , Li ₂ O·5Fe ₂ O ₃ , 2ZnO·TiO ₂ , 2CoO·SnO ₂ nO·TiO ₂ (1250 o·SnO ₂ (1250) o·SnO ₂ (1250) o·TiO ₂ (1100 gO·TiO ₂ (1100	(1100) (1250) (1250), (1250), (1250), (0)[8.44], (0)[8.58], [8.40], (100)[8.53], (100)[8.43], (100)[8.46],	2NiO. 2NiO. NiO.M NiO.C CuO.Mg CuO. CuO. 2CuO. 2CuO. MnO. MnO.	SnO ₂ , IgO·TiO ₂ , IgO·SnO ₂ (?)**, IgO·SnO ₂ (?)**, IgO·SnO ₂ (?), IgO·SnO ₂ (?), IgO·SnO ₂ , IgO·SnO ₂ , IgO·TiO ₂ , IgO·SnO ₂ , IgO·SnO ₂ , IgO·SnO ₂ , IgO·SnO ₂ ,	
RO _{4/3~3/2} (imperfect spinel type)	$\begin{cases} \operatorname{MgO} \cdot \operatorname{xAl_2O_3} \\ \operatorname{CoO} \cdot \operatorname{xAl_2O_3} \\ \operatorname{NiO} \cdot \operatorname{xAl_2O_3} \\ \operatorname{Li_2O} \cdot \operatorname{yAl_2O_3} \end{cases} $	sintered),	,	x > 1 y > 5				
R ₂ O ₃ (Cr ₂ O ₃ type)	$\begin{cases} \frac{\text{MgO} \cdot \text{TiO}_2 (125)}{(0.8 \text{NiO} \cdot 0.2 \text{Co}_3)} \\ (0.9 \text{NiO} \cdot 0.1 \text{Co}_3) \end{cases}$	oO) ·TiO ₂ (12	250),	NiO∙TiO ₂ (128	50),	CuG.T MgO.S NiO.S	SnO_2 ,	
R_3O_5 (Fe $_2O_3$ ·Ti O_2 otype)	$\begin{cases} \operatorname{Fe_2O_3 \cdot TiO_2} (14) \\ \operatorname{MgO \cdot 2TiO_2} (14) \\ \operatorname{ZnO \cdot 2TiO_2} (14) \end{cases}$	100), CoO.2				$egin{aligned} \operatorname{Al_2O_3}. \ \operatorname{MgO.2}. \ \operatorname{Fe_2O_3\cdot SnO_2}, \end{aligned}$		
RO_2 (SnO ₂ type)	TiO ₂ , SnO ₂					CoO.2SnO	₂ , ZnO·2SnO ₂	
* ()one example of sintering temp. (°C) in author's experiment. † []latice constant (kX) of spinel which is not listed in "Crystal Structure, Vol. 2" by Wyckoff.								
** (?)doubtful. †† 2MnO·TiO ₂ is listed as spinel in the Wyckoff's book.								

^{(3) &}quot;Aluminium suboxide" G. Yamaguchi, J. Electrochem. Assoc. Japan, 14, 106(1946); J. Ceram. Assoc. Japan, 55, 42 (1947). Bull. Chem. Soc. Japan, 23, 90 (1952)

Classification of sixfold coordinated oxide crystals and results of synthesis.—Four types of the oxide crystals (RO, R_2O_4 , R_2O_5 , RO_2) are known, but the author proposes to add the new type, R_3O_5 , according to the results of this paper, and the imperfect spinel type ($RO_4/_3\sim_3/_2$). The author's extended classification with examples of positive and negative results is as Table 3.

Result

- 1. Latice constants of R₃O₅ type crystals (Fe₂O₃·TiO₂, Al₂O₃·TiO₂, MgO·2TiO₂, CoO·2TiO₂, ZnO·2TiO₂) are determined.
- 2. Crystal structures of interoxide compounds of metals, whose coordination number of oxygen is six, are classified into six types; RO(NaCl or MgO type), R₃O₄ (spinel type),

RO_{4/3~3/2} (imperfect spinel type), R₂O₃ (Cr₂O₃ type), R₃O₅(Fe₂O₃·TiO₂ type), RO₂(SnO₂ type). Between interoxide compounds of the same type, formation of solid solution is expected.

3. SnO₂ fits into this theory only in the case of spinel formation.

4. NiO and CuO have almost no acidic property, so that in the cases of formation of R_3O_4 and R_3O_5 , they act peculiarly.

5. The author proposes to give the name of "definite ratio solid solution" to crystals of those interoxide compounds when metal atoms are distributed at random at latice points.

Department of Applied Chemistry, Faculty of Engineering, the University of Tokyo, Tokyo